Bizlit +380995622563
Нет в наличии

Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем

Код товара: 107057
Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем книга купить

Автор: Орельен Жерон

Издательство: Диалектика Вильямс
Код товара: 107057
Цена формируется

0 человек добавили в Вишлист

Скоро в продаже
Дата поступления пока не известна

Автор: Орельен Жерон

Издательство: Диалектика Вильямс

Переплет

Твердый

К-во страниц

688 стр

ISBN

978-5-9500296-2-2

Язык

русский

Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных.

В настоящем практическом руководстве - книге «Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем», показано, что и как делать За счет применения конкретных примеров, минимума теории и двух фреймворков Python прикладного уровня – Scikit-Learn и TensorFlow – автор книги Орельен Жерон поможет получить интуитивное представление о концепциях и инструментах, предназначенных для построения современных интеллектуальных систем. 

Из книги Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе книги «Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем» упражнений, помогающих закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования:

  • Исследуйте область машинного обучения, особенно нейронные сети
  • Используйте Scikit-Learn для отслеживания проекта машинного обучения от начала до конца
  • Исследуйте некоторые обучающие модели, включая методы опорных векторов, деревья принятия решений, случайные леса и ансамблевые методы
  • Применяйте библиотеку TensorFlow для построения и обучения нейронных сетей
  • Исследуйте архитектуры нейронных сетей, включая свёрточные сети, рекуррентные сети и глубокое обучение с подкреплением
  • Освойте приемы для обучения и масштабирования глубоких нейронных сетей
  • Используйте практические примеры кода, не овладевая чрезмерно теорией машинного обучения или деталями алгоритмов. 

Отдельная 16 Глава книги посвящена освещению темы Обучение с подкреплением (Reinforcement Learning — RL), которая на сегодняшний день является одной из наиболее захватывающих областей машинного обучения!

Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем отзывы